3 2 A Relational Model of Large Shared Data Banks (1970)

Edgar F. Codd

It is common in academic circles to think that the science of computing is about algorithms.
But in business, computing has always been about data. Of course the two perspectives are not
opposed, but the world looks very different from a data-oriented view than from an algorithm-
oriented view. A database scientist told me that data was the ocean, deep, eternal, and mysterious,
and algorithms were just boats skimming its surface.

Until the 1960s, most practical applications of computers were for computing numbers—either
values of mathematical functions (such as the tables generated by Aiken’s Mark I) or parame-
ters of physical phenomena (astronomical calculations, for example, or the predicted behavior
of an atom bomb). Of course any calculation involving physical phenomena requires numeri-
cal data, but early computers did not have enough storage to process large amounts of it. The
scientific interest in computing was driven by the need to perform numerical calculations, plus
the extraordinary discovery by Church and Turing of the ontology of algorithms. Turing’s re-
markable codebreaking work at Bletchley Park was an exercise of logic and carefully controlled
combinatorial search driven by very small amounts of data (intercepted encrypted messages).

Certainly Vannevar Bush had foreseen the importance of large-scale data manipulation (“Se-
lection devices ... will soon be speeded up from their present rate of reviewing data at a few
hundred a minute,” page 115). Howard Aiken and Grace Hopper anticipated the importance of
business applications, and the International Business Machines Corporation, which had grown
out of companies supplying tabulating machines for the U.S. Census, came to dominate the busi-
ness market for computers. Starting in the mid-1960s, IBM developed a database product to
manage inventory for the Apollo space program. The data model of this system, known orig-
inally as IMS, drew ultimately on graph theory: mechanical parts had sub-parts, and the same
sub-parts might be used in several different larger assemblies, so the connection between data
entities resembled the links connecting nodes of a directed graph.

The quantity of data managed by such systems steadily grew, and it became clear that the way
data were described and queried need not correspond to the memory structures used to store it.
In much the same way as compilers had made it possible to abstract the statement of algorithms
from the particulars of the machine code that executed them, there was a need to talk about
data with some formal clarity, leaving to computer systems themselves the problem of optimally
organizing the data in physical devices for most effective storage and retrieval.

Reprinted from Codd (1970), with permission from the Association for Computing Machinery.
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For Edgar Frank Codd (1923-2003), the way to talk about data was to use a language derived
from the predicate calculus. Data was to be organized as relations. A relation is a set of n-tuples,
for example a set of ordered triples or ordered quadruples, where each position or “column”
contains data of a particular type. The relation can be depicted as a table, with one n-tuple per
row, but the order of the rows in the table is semantically irrelevant because the n-tuples are
logically a set.

In this seminal paper Codd worked out the basics of the relational view of data, and most im-
portantly, developed a relational algebra for combining relations. Codd spent much of his career
with IBM, and this work emerged from his frustration that existing database systems entangled
the database’s logical structure (and thus the logic of programs accessing the database) with
its internal “physical” representation. IBM welcomed Codd’s innovations only tepidly, perhaps
because a successful relational database system would compete with existing IBM products, so
Codd left to start his own firm. Research implementations of the relational database model began
to appear later in the 1970s, with IBM’s System R and the Ingres system of Michael Stonebraker
at Berkeley. Oracle Corporation, Tandem Computers, Stonebraker’s Relational Technology Inc.,
and IBM all released commercial implementations between 1979 and 1981, establishing the
model as a de facto standard. The model and the associated data management language SQL are
now ubiquitous, and Codd was recognized with the Turing award for his contribution.

32.1 Relational Model and Normal Form

HIS paper is concerned with the application of elementary relation theory to systems which
T provide shared access to large banks of formatted data. Except for a paper by Childs (1968),
the principal application of relations to data systems has been to deductive question-answering
systems. Levien and Maron (1967) provide numerous references to work in this area.

In contrast, the problems treated here are those of data independence—the independence of
application programs and terminal activities from growth in data types and changes in data
representation—and certain kinds of data inconsistency which are expected to become trouble-
some even in nondeductive systems.

The relational view (or model) of data described in §32.1 appears to be superior in several re-
spects to the graph or network model (Bachman, 1965; McGee, 1969) presently in vogue for non-
inferential systems. It provides a means of describing data with its natural structure only—that
is, without superimposing any additional structure for machine representation purposes. Accord-
ingly, it provides a basis for a high level data language which will yield maximal independence
between programs on the one hand and machine representation and organization of data on the
other.

A further advantage of the relational view is that it forms a sound basis for treating derivability,
redundancy, and consistency of relations—these are discussed in §32.2. The network model, on
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the other hand, has spawned a number of confusions, not the least of which is mistaking the
derivation of connections for the derivation of relations . ...

Finally, the relational view permits a clearer evaluation of the scope and logical limitations
of present formatted data systems, and also the relative merits (from a logical standpoint) of
competing representations of data within a single system. Examples of this clearer perspective
are cited in various parts of this paper. Implementations of systems to support the relational
model are not discussed.

32.1.2 Data dependencies in present systems The provision of data description tables in
recently developed information systems represents a major advance toward the goal of data in-
dependence (IBM, 1965b,a; Bleier, 1967; IDS, 1968). Such tables facilitate changing certain
characteristics of the data representation stored in a data bank. However, the variety of data
representation characteristics which can be changed without logically impairing some applica-
tion programs is still quite limited. Further, the model of data with which users interact is still
cluttered with representational properties, particularly in regard to the representation of collec-
tions of data (as opposed to individual items). Three of the principal kinds of data dependencies
which still need to be removed are: ordering dependence, indexing dependence, and access path
dependence. In some systems these dependencies are not clearly separable from one another.

32.1.2.1 Ordering dependence FElements of data in a data bank may be stored in a variety
of ways, some involving no concern for ordering, some permitting each element to participate
in one ordering only, others permitting each element to participate in several orderings. Let us
consider those existing systems which either require or permit data elements to be stored in at
least one total ordering which is closely associated with the hardware-determined ordering of
addresses. For example, the records of a file concerning parts might be stored in ascending order
by part serial number. Such systems normally permit application programs to assume that the
order of presentation of records from such a file is identical to (or is a subordering of) the stored
ordering. Those application programs which take advantage of the stored ordering of a file are
likely to fail to operate correctly if for some reason it becomes necessary to replace that ordering
by a different one. Similar remarks hold for a stored ordering implemented by means of pointers.

It is unnecessary to single out any system as an example, because all the well-known informa-
tion systems that are marketed today fail to make a clear distinction between order of presentation
on the one hand and stored ordering on the other. Significant implementation problems must be
solved to provide this kind of independence.
32.1.2.2 Indexing dependence In the context of formatted data, an index is usually thought
of as a purely performance-oriented component of the data representation. It tends to improve
response to queries and updates and, at the same time, slow down response to insertions and
deletions. From an informational standpoint, an index is a redundant component of the data
representation. If a system uses indices at all and if it is to perform well in an environment with
changing patterns of activity on the data bank, an ability to create and destroy indices from time
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File  Segment Fields File  Segment Fields
F PART part # F PROJECT  project #
part name project name
part description project description
quantity-on-hand PART part #
quantity-on-order part name
PROJECT project # part description
project name quantity-on-hand
project description quantity-on-order
quantity committed quantity committed
Figure 32.1: Structure 1. Projects subordinate to parts Figure 32.2: Structure 2. Parts subordinate to projects

to time will probably be necessary. The question then arises: Can application programs and
terminal activities remain invariant as indices come and go?

Present formatted data systems take widely different approaches to indexing. TDMS (Bleier,
1967) unconditionally provides indexing on all attributes. The presently released version of IMS
(IBM, 1965b) provides the user with a choice for each file: a choice between no indexing at
all (the hierarchic sequential organization) or indexing on the primary key only (the hierarchic
indexed sequential organization). In neither case is the user’s application logic dependent on
the existence of the unconditionally provided indices. IDS, however, permits the file designers
to select attributes to be indexed and to incorporate indices into the file structure by means of
additional chains. Application programs taking advantage of the performance benefit of these
indexing chains must refer to those chains by name. Such programs do not operate correctly if
these chains are later removed.
32.1.2.3 Access path dependence Many of the existing formatted data systems provide users
with tree-structured files or slightly more general network models of the data. Application pro-
grams developed to work with these systems tend to be logically impaired if the trees or networks
are changed in structure. A simple example follows.

Suppose the data bank contains information about parts and projects. For each part, the part
number, part name, part description, quantity-on-hand, and quantity-on-order are recorded. For
each project, the project number, project name, project description are recorded. Whenever a
project makes use of a certain part, the quantity of that part committed to the given project is also
recorded. Suppose that the system requires the user or file designer to declare or define the data
in terms of tree structures. Then, any one of the hierarchical structures may be adopted for the
information mentioned above (see Structures 1-5, Figures 32.1-32.5).

Now, consider the problem of printing out the part number, part name, and quantity committed
for every part used in the project whose project name is “alpha.” The following observations
may be made regardless of which available tree-oriented information system is selected to tackle
this problem. If a program P is developed for this problem assuming one of the five structures
above—that is, P makes no test to determine which structure is in effect—then P will fail on at
least three of the remaining structures. More specifically, if P succeeds with structure 5, it will
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File  Segment Fields

F PART part # File  Segment Fields
part name F PART part #
part description part description
quantity-on-hand quantity-on-hand
quantity-on-order quantity-on-order

G PROJECT  project # PROJECT project #
project name quantity committed
project description G PROJECT  project #

PART part # project name

quantity committed project description

Figure 32.3: Structure 3. Parts and projects as peers,
commitment relationship subordinate to projects

Figure 32.4: Structure 4. Parts and projects as peers,
commitment relationship subordinate to parts

fail with all the others; if P succeeds with structure 3 or 4, it will fail with at least 1, 2, and 5; if
P succeeds with 1 or 2, it will fail with at least 3, 4, and 5. The reason is simple in each case. In
the absence of a test to determine which structure is in effect, P fails because an attempt is made
to execute a reference to a nonexistent file (available systems treat this as an error) or no attempt
is made to execute a reference to a file containing needed information. The reader who is not
convinced should develop sample programs for this simple problem.

Since, in general, it is not practical to develop ap-

plication programs which test for all tree structur- File  Segment Fields
ings permitted by the system, these programs fail F PART part #
when a change in structure becomes necessary. partname
. . . part description
Systems which provide users with a network quantity-on-hand
model of the data run into similar difficulties. In quantity-on-order
both the tree and network cases, the user (or his G PROJECT  project #

program) is required to exploit a collection of project name

user access paths to the data. It does not mat-
ter whether these paths are in close correspon-
dence with pointer-defined paths in the stored

H COMMIT

project description
part #

project #

quantity committed

Figure 32.5: Structure 5. Parts, projects, and commit-

representation—in IDS the correspondence is ex-
ment relationship as peers

tremely simple, in TDMS it is just the opposite.
The consequence, regardless of the stored repre-
sentation, is that terminal activities and programs become dependent on the continued existence
of the user access paths. One solution to this is to adopt the policy that once a user access path is
defined it will not be made obsolete until all application programs using that path have become
obsolete. Such a policy is not practical, because the number of access paths in the total model
for the community of users of a data bank would eventually become excessively large.

32.1.3 A relational view of data The term relation is used here in its accepted mathematical
sense. Given sets Sy, S, ..., S, (not necessarily distinct), R is a relation on these n sets if itis a

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/1846276/9780262363174_c003100.pdf by Columbia University Libraries user on 22 January 2023



312 Chapter 32 A Relational Model of Large Shared Data Banks (1970)

set of n-tuples each of which has its first element from S, its second element from S, and so on.
We shall refer to S; as the j™ domain of R. As defined above, R is said to have degree n. Relations
of degree 1 are often called unary, degree 2 binary, degree 3 ternary, and degree n n-ary.

For expository reasons, we shall frequently make use of an array representation of relations,
but it must be remembered that this particular representation is not an essential part of the rela-
tional view being expounded. An array which represents an n-ary relation R has the following
properties:

1. Each row represents an n-tuple of R.

2. The ordering of rows is immaterial.

3. All rows are distinct.

4. The ordering of columns is significant—it corresponds to the ordering Si, S», ..., S, of
the domains on which R is defined (see, however, remarks below on domain-ordered and
domain-unordered relations).

5. The significance of each column is partially conveyed by labeling it with the name of the
corresponding domain.

The example in Figure 32.6 illustrates a relation of degree 4, called supply, which reflects the
shipments-in-progress of parts from specified suppliers to specified projects in specified quanti-
ties.

One might ask: If the columns are labeled by the
supply  (supplier  part  project  quantity) name of COI‘I‘CSpOl‘ldil‘lg domains, Why should the

1 2 5 17 ordering of columns matter? As the example in
; g ; 2; Figure 32.7 shows, two columns may have iden-
5 7 5 4 tical headings (indicating identical domains) but
4 1 1 12 possess distinct meanings with respect to the re-
Figure 32.6: A relation of degree 4 lation. The relation depicted is called component.

It is a ternary relation, whose first two domains are

called part and third domain is called quantity. The
meaning of component (x,y, z) is that part x is an immediate component (or subassembly) of part
¥, and z units of part x are needed to assemble one unit of part y. It is a relation which plays a
critical role in the parts explosion problem.

It is a remarkable fact that several existing information systems (chiefly those based on tree-
structured files) fail to provide data representations for relations which have two or more identical
domains. The present version of IMS/360 (IBM, 1965b) is an example of such a system.

The totality of data in a data bank may be viewed as a collection of time-varying relations.
These relations are of assorted degrees. As time progresses, each n-ary relation may be subject
to insertion of additional n-tuples, deletion of existing ones, and alteration of components of any
of its existing n-tuples.

In many commercial, governmental, and scientific data banks, however, some of the relations
are of quite high degree (a degree of 30 is not at all uncommon). Users should not normally
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be burdened with remembering the domain ordering of any relation (for example, the ordering
supplier, then part, then project, then quantity in the relation supply). Accordingly, we propose
that users deal, not with relations which are domain-ordered, but with relationships which are
their domain-unordered counterparts. (In mathematical terms, a relationship is an equivalence
class of those relations that are equivalent under permutation of domains (see §32.2.1.1).) To
accomplish this, domains must be uniquely identifiable at least within any given relation, without
using position. Thus, where there are two or more identical domains, we require in each case that
the domain name be qualified by a distinctive role name, which serves to identify the role played
by that domain in the given relation. For example, in the relation component of Figure 32.7, the
first domain part might be qualified by the role name sub, and the second by super, so that users
could deal with the relationship component and its domains—sub.part, super.part, quantity—
without regard to any ordering between these domains.
To sum up, it is proposed that most users should

interact with a relational model of the data con-  component (part  part  quantity)
sisting of a collection of time-varying relation- 1 5 9
ships (rather than relations). Each user need not § z ;
know more about any relationship than its name 5 6 12
together with the names of its domains (role qual- 3 6 3
ified whenever necessary). (Naturally, as with any 2 ; }

data put into and retrieved from a computer sys-
tem, the user will normally make far more effective
use of the data if he is aware of its meaning.) Even
this information might be offered in menu style by
the system (subject to security and privacy constraints) upon request by the user.

There are usually many alternative ways in which a relational model may be established for
a data bank. In order to discuss a preferred way (or normal form), we must first introduce
a few additional concepts (active domain, primary key, foreign key, nonsimple domain) and
establish some links with terminology currently in use in information systems programming. In
the remainder of this paper, we shall not bother to distinguish between relations and relationships
except where it appears advantageous to be explicit.

Consider an example of a data bank which includes relations concerning parts, projects, and
suppliers. One relation called part is defined on the following domains:

Figure 32.7: A relation with two identical domains

1. part number
part name

part color

part weight
quantity on hand

AR

quantity on order
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and possibly other domains as well. Each of these domains is, in effect, a pool of values, some
or all of which may be represented in the data bank at any instant. While it is conceivable that, at
some instant, all part colors are present, it is unlikely that all possible part weights, part names,
and part numbers are. We shall call the set of values represented at some instant the active
domain at that instant.

Normally, one domain (or combination of domains) of a given relation has values which
uniquely identify each element (n-tuple) of that relation. Such a domain (or combination) is
called a primary key. In the example above, part number would be a primary key, while part
color would not be. A primary key is nonredundant if it is either a simple domain (not a com-
bination) or a combination such that none of the participating simple domains is superfluous in
uniquely identifying each element. A relation may possess more than one nonredundant primary
key. This would be the case in the example if different parts were always given distinct names.
Whenever a relation has two or more nonredundant primary keys, one of them is arbitrarily
selected and called the primary key of that relation.

A common requirement is for elements of a relation to cross-reference other elements of the
same relation or elements of a different relation. Keys provide a user-oriented means (but not
the only means) of expressing such cross-references. We shall call a domain (or domain combi-
nation) of relation R a foreign key if it is not the primary key of R but its elements are values of
the primary key of some relation S (the possibility that § and R are identical is not excluded). In
the relation supply of Figure 32.6, the combination of supplier, part, project is the primary key,
while each of these three domains taken separately is a foreign key.

In previous work there has been a strong tendency to treat the data in a data bank as consisting
of two parts, one part consisting of entity descriptions (for example, descriptions of suppliers)
and the other part consisting of relations between the various entities or types of entities (for
example, the supply relation). This distinction is difficult to maintain when one may have foreign
keys in any relation whatsoever. In the user’s relational model there appears to be no advantage
to making such a distinction (there may be some advantage, however, when one applies relational
concepts to machine representations of the user’s set of relationships).

So far, we have discussed examples of relations which are defined on simple domains—
domains whose elements are atomic (nondecomposable) values. Nonatomic values can be dis-
cussed within the relational framework. Thus, some domains may have relations as elements.
These relations may, in turn, be defined on nonsimple domains, and so on. For example, one of
the domains on which the relation employee is defined might be salary history. An element of
the salary history domain is a binary relation defined on the domain date and the domain salary.
The salary history domain is the set of all such binary relations. At any instant of time there
are as many instances of the salary history relation in the data bank as there are employees. In
contrast, there is only one instance of the employee relation.

The terms attribute and repeating group in present data base terminology are roughly analo-
gous to simple domain and nonsimple domain, respectively. Much of the confusion in present
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employee

jobhistory children . . . .
employee (man#, name, birthdate, jobhistory, chidren)

salaryhistory jobhistory (jobdate, title, salaryhistory)
salaryhistory (salarydate, salary)
children (childname, birthyear)

Figure 32.8: Unnormalized set

terminology is due to failure to distinguish between type and instance (as in “record’) and be-
tween components of a user model of the data on the one hand and their machine representation
counterparts on the other hand (again, we cite “record” as an example).

32.1.4 Normal form A relation whose domains are all simple can be represented in storage
by a two-dimensional column-homogeneous array of the kind discussed above. Some more com-
plicated data structure is necessary for a relation with one or more nonsimple domains. For this
reason (and others to be cited below) the possibility of eliminating nonsimple domains appears
worth investigating. There is, in fact, a very simple elimination procedure, which we shall call
normalization.

Consider, for example, the collection of relations exhibited in Figure 32.8. Job history and
children are nonsimple domains of the relation employee. Salary history is a nonsimple domain
of the relation job history. The tree in Figure 32.8 shows just these interrelationships of the
nonsimple domains.

Normalization proceeds as follows. Starting with
the relation at the top of the tree, take its primary employee’ (man#, name, birthdate)
key and expand each of the immediately subor-  Jobhistory” (man#, jobdate. title)
din.ate relation.s by ins.erti.ng this prirr.lary key do- Zi]jz::tz;ya,n%i;f:ﬁtmﬁi?aim salary)
main or domain combination. The primary key of
each expanded relation consists of the primary key
before expansion augmented by the primary key
copied down from the parent relation. Now, strike out from the parent relation all nonsimple
domains, remove the top node of the tree, and repeat the same sequence of operations on each
remaining subtree.

The result of normalizing the collection of relations in Figure 32.8 is the collection in Fig-
ure 32.9. The primary key of each relation is italicized to show how such keys are expanded by
the normalization.

If normalization as described above is to be applicable, the unnormalized collection of relations
must satisfy the following conditions:

Figure 32.9: Normalized set

1. The graph of interrelationships of the nonsimple domains is a collection of trees.
2. No primary key has a component domain which is nonsimple.
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The writer knows of no application which would require any relaxation of these conditions.
Further operations of a normalizing kind are possible. These are not discussed in this paper.

The simplicity of the array representation which becomes feasible when all relations are cast
in normal form is not only an advantage for storage purposes but also for communication of bulk
data between systems which use widely different representations of the data. The communication
form would be a suitably compressed version of the array representation and would have the
following advantages:

1. It would be devoid of pointers (address-valued or displacement-valued).
2. It would avoid all dependence on hash addressing schemes.
3. It would contain no indices or ordering lists.

If the user’s relational model is set up in normal form, names of items of data in the data bank
can take a simpler form than would otherwise be the case. A general name would take a form
such as

R(g).rd

where R is a relational name; g is a generation identifier (optional); r is a role name (optional);
d is a domain name. Since g is needed only when several generations of a given relation exist,
or are anticipated to exist, and r is needed only when the relation R has two or more domains
named d, the simple form R.d will often be adequate.

32.1.5 Some linguistic aspects The adoption of a relational model of data, as described
above, permits the development of a universal data sublanguage based on an applied predicate
calculus. A first-order predicate calculus suffices if the collection of relations is in normal form.
Such a language would provide a yardstick of linguistic power for all other proposed data lan-
guages, and would itself be a strong candidate for embedding (with appropriate syntactic mod-
ification) in a variety of host languages (programming, command- or problem-oriented). While
it is not the purpose of this paper to describe such a language in detail, its salient features would
be as follows.

Let us denote the data sublanguage by R and the host language by H. R permits the declaration
of relations and their domains. Each declaration of a relation identifies the primary key for that
relation. Declared relations are added to the system catalog for use by any members of the
user community who have appropriate authorization. H permits supporting declarations which
indicate, perhaps less permanently, how these relations are represented in storage. R permits the
specification for retrieval of any subset of data from the data bank. Action on such a retrieval
request is subject to security constraints.

The universality of the data sublanguage lies in its descriptive ability (not its computing abil-
ity). In a large data bank each subset of the data has a very large number of possible (and
sensible) descriptions, even when we assume (as we do) that there is only a finite set of function
subroutines to which the system has access for use in qualifying data for retrieval. Thus, the class
of qualification expressions which can be used in a set specification must have the descriptive
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power of the class of well-formed formulas of an applied predicate calculus. It is well known
that to preserve this descriptive power it is unnecessary to express (in whatever syntax is chosen)
every formula of the selected predicate calculus. For example, just those in prenex normal form
are adequate (Church, 1956).

Arithmetic functions may be needed in the qualification or other parts of retrieval statements.
Such functions can be defined in H and invoked in R.

A set so specified may be fetched for query purposes only, or it may be held for possible
changes. Insertions take the form of adding new elements to declared relations without regard to
any ordering that may be present in their machine representation. Deletions which are effective
for the community (as opposed to the individual user or sub-communities) take the form of
removing elements from declared relations. Some deletions and updates may be triggered by
others, if deletion and update dependencies between specified relations are declared in R.

One important effect that the view adopted toward data has on the language used to retrieve
it is in the naming of data elements and sets. Some aspects of this have been discussed in the
previous section. With the usual network view, users will often be burdened with coining and
using more relation names than are absolutely necessary, since names are associated with paths
(or path types) rather than with relations.

Once a user is aware that a certain relation is stored, he will expect to be able to exploit it using
any combination of its arguments as “knowns” and the remaining arguments as “unknowns,”
because the information (like Everest) is there. This is a system feature (missing from many
current information systems) which we shall call (logically) symmetric exploitation of relations.
Naturally, symmetry in performance is not to be expected.

To support symmetric exploitation of a single binary relation, two directed paths are needed.
For a relation of degree n, the number of paths to be named and controlled is n factorial.

Again, if a relational view is adopted in which every n-ary relation (n > 2) has to be expressed
by the user as a nested expression involving only binary relations (see Feldman’s LEAP System
[Feldman and Rovner, 1968], for example) then 2n — 1 names have to be coined instead of only
n + 1 with direct n-ary notation as described in §32.1.2. For example, the 4-ary relation supply
of Figure 32.6, which entails 5 names in n-ary notation, would be represented in the form

P(supplier, Q(part, R(project, quantity)))

in nested binary notation and, thus, employ 7 names.

A further disadvantage of this kind of expression is its asymmetry. Although this asymmetry
does not prohibit symmetric exploitation, it certainly makes some bases of interrogation very
awkward for the user to express (consider, for example, a query for those parts and quantities
related to certain given projects via Q and R).

32.1.6 Expressible, named, and stored relations Associated with a data bank are two col-
lections of relations: the named set and the expressible set. The named set is the collection
of all those relations that the community of users can identify by means of a simple name (or
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identifier). A relation R acquires membership in the named set when a suitably authorized user
declares R; it loses membership when a suitably authorized user cancels the declaration of R.

The expressible set is the total collection of relations that can be designated by expressions in
the data language. Such expressions are constructed from simple names of relations in the named
set; names of generations, roles and domains; logical connectives; the quantifiers of the predicate
calculus; and certain constant relation symbols such as =, >. The named set is a subset of the
expressible set—usually a very small subset.

Since some relations in the named set may be time-independent combinations of others in that
set, it is useful to consider associating with the named set a collection of statements that define
these time-independent constraints. We shall postpone further discussion of this until we have
introduced several operations on relations (see §32.2).

One of the major problems confronting the designer of a data system which is to support a
relational model for its users is that of determining the class of stored representations to be
supported. Ideally, the variety of permitted data representations should be just adequate to cover
the spectrum of performance requirements of the total collection of installations. Too great a
variety leads to unnecessary overhead in storage and continual reinterpretation of descriptions
for the structures currently in effect.

For any selected class of stored representations the data system must provide a means of trans-
lating user requests expressed in the data language of the relational model into corresponding—
and efficient—actions on the current stored representation. For a high level data language this
presents a challenging design problem. Nevertheless, it is a problem which must be solved—as
more users obtain concurrent access to a large data bank, responsibility for providing efficient
response and throughput shifts from the individual user to the data system.

32.2 Redundancy and Consistency

32.2.1 Operations on relations Since relations are sets, all of the usual set operations are
applicable to them. Nevertheless, the result may not be a relation; for example, the union of a
binary relation and a ternary relation is not a relation.

The operations discussed below are specifically for relations. These operations are introduced
because of their key role in deriving relations from other relations. Their principal applica-
tion is in noninferential information systems—systems which do not provide logical inference
services—although their applicability is not necessarily destroyed when such services are added.

Most users would not be directly concerned with these operations. Information systems de-
signers and people concerned with data bank control should, however, be thoroughly familiar
with them.
32.2.1.1 Permutation A binary relation has an array representation with two columns. Inter-
changing these columns yields the converse relation. More generally, if a permutation is applied
to the columns of an n-ary relation, the resulting relation is said to be a permutation of the given
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relation. There are, for example, 4! = 24 permutations of the relation supply in Figure 32.6, if
we include the identity permutation which leaves the ordering of columns unchanged.

Since the user’s relational model consists of a collection of relationships (domain-unordered
relations), permutation is not relevant to such a model considered in isolation. It is, however,
relevant to the consideration of stored representations of the model. In a system which provides
symmetric exploitation of relations, the set of queries answerable by a stored relation is identical
to the set answerable by any permutation of that relation. Although it is logically unnecessary
to store both a relation and some permutation of it, performance considerations could make it
advisable.
32.2.1.2 Projection Suppose now we select certain columns of a relation (striking out the
others) and then remove from the resulting array any duplication in the rows. The final array
represents a relation which is said to be a projection of the given relation.

A selection operator 7 is used to obtain any desired permutation, projection, or combination
of the two operations. Thus, if L is a list of indices L = iy, i3, ..., iy and R is an n-ary relation
(n > k), then 7z (R) is the k-ary relation whose j column is column ijof R(j=1,2,...,k
except that duplication in resulting rows is removed. Consider the relation supply of Figure 32.6.
A permuted projection of this relation is exhibited in Figure 32.10. Note that, in this particular
case, the projection has fewer n-tuples than the relation from which it is derived.
32.2.1.3 Join Suppose we are given two binary relations, which have some domain in com-
mon. Under what circumstances can we combine these relations to form a ternary relation which
preserves all of the information in the given relations?

The example in Figure 32.11 shows two relations R, S, which are joinable without loss of
information, while Figure 32.12 shows a join of R with S. A binary relation R is joinable with
a binary relation § if there exists a ternary relation U such that 7;2(U) = R and mp3(U) = S.
Any such ternary relation is called a join of R with S. If R, S are binary relations such that
m(R) = m1(S), then R is joinable with §. One join that always exists in such a case is the natural
Jjoin of R with § defined by

R«S ={(a,b,c) : R(a,b) A S(b,c)}

where R(a, b) has the value true if (a, b) is a member of R and similarly for S (b, ¢). It is immediate
that
mp(R*S)=R

and
7T23(R *S) =S.

Note that the join shown in Figure 32.12 is the natural join of R with S from Figure 32.11.
Another join is shown in Figure 32.13.

Inspection of these relations reveals an element (element 1) of the domain part (the domain on
which the join is to be made) with the property that it possesses more than one relative under R
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131 (supply) (project  supplier)

5 1
5 2 R (supplier  part) S (part project)
1 4 1 1 1 1
7 2 2 1 1 2
Figure 32.10: A permuted projection of the relation 2 2 2 1
in Figure 32.6 Figure 32.11: Two joinable relations

and also under S. It is this element which gives rise to the plurality of joins. Such an element in
the joining domain is called a point of ambiguity with respect to the joining of R with S.

RS (supplier  part project)

1 1 1

1 1 2 U (supplier  part  project)

2 1 1 1 1 2

2 1 2 2 1 1

2 2 1 2 2 1
Figure 32.12: The natural join of R with S (from Fig- Figure 32.13: Another join of R with S (from Fig-
ure 32.11) ure 32.11)

If either m»;(R) or S is a function, no point of ambiguity can occur in joining R with S. In
such a case, the natural join of R with S is the only join of R with S. Note that the reiterated
qualification “of R with S is necessary, because S might be joinable with R (as well as R with S),
and this join would be an entirely separate consideration. In Figure 32.11, none of the relations
R, m1(R), S, m»1(S) is a function. ...

32.2.2 Redundancy

32.2.3 Consistency

32.24 Summary In §32.1 a relational model of data is proposed as a basis for protecting
users of formatted data systems from the potentially disruptive changes in data representation
caused by growth in the data bank and changes in traffic. A normal form for the time-varying
collection of relationships is introduced.

In §32.2 operations on relations and two types of redundancy are defined and applied to the
problem of maintaining the data in a consistent state. This is bound to become a serious practical
problem as more and more different types of data are integrated together into common data
banks. ...
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