
Chapter 7

Computers and
representation

This book is directed towards understanding what can be done with com-

puters. In Part I we developed a theoretical orientation towards human
thought and language, which serves as the background for our analysis of

the technological potential. In Part II we turn towards the technology it-

self, with particular attention to revealing the assumptions underlying its

development. In this chapter we first establish a context for talking about

computers and programming in general, laying out some basic issues that

apply to all programs, including the artificial intelligence work that we will

describe in subsequent chapters. We go into some detail here so that read-

ers not familiar with the design of computer systems will have a clearer

perspective both on the wealth of detail and on the broad relevance of a

few general principles.

Many books on computers and their implications begin with a descrip-

tion of the formal aspects of computing, such as binary numbers. Boolean

logic, and Turing machines. This sort of material is necessary for technical

mastery and can be useful in dispelling the mysteries of how a machine

can do computation at all. But it turns attention away from the more

significant aspects of computer systems that arise from their larger-scale

organization as collections of interacting components (both physical and

computational) based on a formalization of some aspect of the world. In

this chapter we concentrate on the fundamental issues of language and

rationality that are the background for designing and programming com-

puters.

We must keep in mind that our description is based on an idealiza-

tion in which we take for granted the functioning of computer systems

83

84 CHAPTER 7. COMPUTERS AND REPRESENTATION

according to their intended design. In the actual use of computers there

is a critical larger domain, in which new issues arise from the breakdowns

('bugs' and 'malfunctions') of both hardware and software. Furthermore,

behind these technical aspects are the concerns of the people who design,

build, and use the devices. An understanding of what a computer really

does is an understanding of the social and political situation in which it

is designed, built, purchased, installed, and used. Most unsuccessful com-

puting systems have been relatively successful at the raw technical level

but failed because of not dealing with breakdowns and not being designed

appropriately for the context in which they were to be operated.^

It is beyond the scope of our book to deal thoroughly with all of these

matters. Our task is to provide a theoretical orientation within which we
can identify significant concerns and ask appropriate questions. In showing

how programming depends on representation we are laying one cornerstone

for the understanding of programs, and in particular of programs that are

claimed to be intelligent.

7.1 Programming as representation

The first and most obvious point is that whenever someone writes a pro-

gram, it is a program about something.^ Whether it be the orbits of

a satellite, the bills and payroll of a corporation, or the movement of

spaceships on a video screen, there is some subject domain to which the

programmer addresses the program.

For the moment (until we refine this view in section 7.2) we can re-

gard the underlying machine as providing a set of storage cells, each of

which can hold a symbol structure, either a number or a sequence of char-

acters (letters, numerals, and punctuation marks). The steps of a program

specify operations on the contents of those cells—copying them into other

cells, comparing them, and modifying them (for example by adding two

numbers or removing a character from a sequence).

In setting up a program, the programmer has in mind a systematic cor-

respondence by which the contents of certain storage cells represent objects

and relationships within the subject domain. For example, the contents of

three of the cells may represent the location of some physical object with

respect to a Cartesian coordinate system and unit of measurement. The

operations by which these contents are modified as the program runs are

designed to correspond to some desired calculation about the location of

^The nature and importance of this social embedding of computers is described by

Kling and Scacchi in "The web of computing" (1982).

^We will ignore special cases like the construction of a sequence of instructions whose

purpose is simply to exercise the machine to test it for flaws.

7.1. PROGRAMMING AS REPRESENTATION 85

that object, for example in tracking a satellite. Similarly, the sequence

of characters in a cell may represent the name or address of a person for

whom a paycheck is being prepared.

Success in programming depends on designing a representation and set

of operations that are both veridical snid effective. They are veridical to the

extent that they produce results that are correct relative to the domain:

they give the actual location of the satellite or the legal deductions from

the paycheck. They are effective to varying degrees, depending on how
efficiently the computational operations can be carried out. Much of the

detailed content of computer science lies in the design of representations

that make it possible to carry out some class of operations efficiently.

Research on artificial intelligence has emphasized the problem of rep-

resentation. In typical artificial intelligence programs, there is a more

complex correspondence between what is to be represented and the cor-

responding form in the machine. For example, to represent the fact that

the location of a particular object is "between 3 and 5 miles away" or

"somewhere near the orbiter," we cannot use a simple number. There

must be conventions by which some structures (e.g., sequences of charac-

ters) correspond to such facts. Straightforward mappings (such as simply

storing English sentences) raise insuperable problems of effectiveness. The
operations for coming to a conclusion are no longer the well-understood

operations of arithmetic, but call for some kind of higher-level reasoning.

In general, artificial intelligence researchers make use of formal logical

systems (such as predicate calculus) for which the available operations

and their consequences are well understood. They set up correspondences

between formulas in such a system and the things being represented in

such a way that the operations achieve the desired veridicality. There

is a great deal of argument as to the most important properties of such

a formal system, but the assumptions that underlie all of the standard

approaches can be summarized as follows:

1. There is a structure of formal symbols that can be manipulated

according to a precisely defined and well-understood system of rules.

2. There is a mapping through which the relevant properties of the

domain can be represented by symbol structures. This mapping is

systematic in that a community of programmers can agree as to what

a given structure represents.

3. There are operations that manipulate the symbols in such a way as

to produce veridical results—to derive new structures that represent

the domain in such a way that the programmers would find them

accurate representations. Programs can be written that combine

these operations to produce desired results.

86 CHAPTER 7. COMPUTERS AND REPRESENTATION

The problem is that representation is in the mind of the beholder.

There is nothing in the design of the machine or the operation of the

program that depends in any way on the fact that the symbol structures

are viewed as representing anything at all.*^

There are two cases in which it is not immediately obvious that the

significance of what is stored in the machine is externally attributed: the

case of robot-like machines with sensors and effectors operating in the

physical world, and the case of symbols with internal referents, such as

those representing locations and instructions within the machine. We will

discuss the significance of robots in Chapter 8, and for the moment will

simply state that, for the kinds of robots that are constructed in artificial

intelligence, none of the significant issues differ from those discussed here.

The problem of 'meta-reference' is more complex. Newell and Simon,

in their discussion of physical symbol systems ("Computer science as an

empirical inquiry," 1976), argue that one essential feature of intelligent

systems is that some of the symbols can be taken as referring to operations

and other symbols within the machine: not just for an outside observer,

but as part of the causal mechanism.

Even in this case there is a deep and important sense in which the

referential relationship is still not intrinsic. However, the arguments are

complex and not central to our discussion. We are primarily concerned

with how computers are used in a practical context, where the central

issue is the representation of the external world. The ability of computers

to coherently represent their own instructions and internal structure is an

interesting and important technical consideration, but not one that affects

our perspective.

7.2 Levels of representation

In the previous section, computers were described rather loosely as be-

ing able to carry out operations on symbol structures of various kinds.

However this is not a direct description of their physical structure and

functioning. Theoretically, one could describe the operation of a digital

computer purely in terms of electrical impulses travelling through a com-

plex network of electronic elements, without treating these impulses as

symbols for anything. Just as a particular number in the computer might

represent some relevant domain object (such as the location of a satel-

lite), a deeper analysis shows that the number itself is not an object in

^This point has been raised by a number of philosophers, such as Fodor in "Method-

ological solipsism considered as a research strategy in cognitive psychology" (1980),

and Searle in "Minds, brains, and programs" (1980). We will discuss its relevance

to language understanding in Chapter 9.

7.2. LEVELS OF REPRESENTATION 87

the computer, but that some pattern of impulses or electrical states in

turn represents the number. One of the properties unique to the digital

computer is the possibility of constructing systems that cascade levels of

representation one on top of another to great depth.

The computer programmer or theorist does not begin with a view of the

computer as a physical machine with which he or she interacts, but as an

abstraction—a formalism for describing patterns of behavior. In program-

ming, we begin with a language whose individual components describe

simple acts and objects. Using this language, we build up descriptions of

algorithms for carrying out a desired task. As a programmer, one views

the behavior of the system as being totally determined by the program.

The language implementation is opaque in that the detailed structure of

computer systems that actually carry out the task are not relevant in the

domain of behavior considered by the programmer.

If we observe a computer running a typical artificial intelligence pro-

gram, we can analyze its behavior at any of the following levels:

The physical machine. The machine is a complex network of compo-

nents such as wires, integrated circuits, and magnetic disks. These com-

ponents operate according to the laws of physics, generating patterns of

electrical and magnetic activity. Of course, any understandable description

will be based on finding a modular decomposition of the whole machine

into components, each of which can be described in terms of its internal

structure and its interaction with other components. This decomposition

is recursive—a single component of one structure is in turn a composite

made up of smaller structures. At the bottom of this decomposition one

finds the basic physical elements, such as strands of copper and areas of

semiconductor metal laid down on a wafer of silicon crystal. It is important

to distinguish this kind of hierarchical decomposition into components (at

a single level) from the analysis of levels of representation.

The logical machine. The computer designer does not generally begin

with a concept of the machine as a collection of physical components, but

as a collection of logical elements. The components at this level are logical

abstractions such as or-gates, inverters, and flip-flops (or, on a higher level

of the decomposition, multiplexers, arithmetic-logical units, and address

decoders). These abstractions are represented by activity in the physical

components. For example, certain ranges of voltages are interpreted as

representing a logical 'true' and other ranges a logical 'false.' The course

of changes over time is interpreted as a sequence of discrete cycles, with

the activity considered stable at the end of each cycle. If the machine is

properly designed, the representation at this level is veridical—patterns

of activity interpreted as logic will lead to other patterns according to

88 CHAPTER 7. COMPUTERS AND REPRESENTATION

the rules of logic. In any real machine, at early stages of debugging,

this representation will be incomplete. There will be behavior caused

by phenomena such as irregular voltages and faulty synchronization that

does not accurately represent the logical machine. In a properly working

machine, all of the relevant physical behavior can be characterized in terms

of the logic it represents.

The abstract machine. The logical machine is still a network of compo-

nents, with activity distributed throughout. Most of today's computers are

described in terms of an abstract single sequential processor, which steps

through a series of instructions. It is at this level of representation that a

logical pattern (a pattern of trues and falses) is interpreted as representing

a higher-level symbol such as a number or a character. Each instruction is

a simple operation of fetching or storing a symbol or performing a logical

or arithmetic operation, such as a comparison, an addition, or a multi-

plication. The activity of the logical machine cannot be segmented into

disjoint time slices that represent the steps of the abstract machine. In

a modern machine, at any one moment the logical circuits will be simul-

taneously completing one step (storing away its results), carrying out the

following one (e.g., doing an arithmetic operation), and beginning the next

(analyzing it to see where its data are to be fetched from). Other parts

of the circuitry may be performing tasks needed for the ongoing function

of the machine (e.g., sending signals that prevent items from fading from

memory cells), which are independent of the abstract machine steps. Most

descriptions of computers are at the level of the abstract machine, since

this is usually the lowest level at which the programmer has control over

the details of activity.
"*

A high-level language. Most programs today are written in languages

such as FORTRAN, BASIC, COBOL, and LISP, which provide elemen-

tary operations at a level more suitable for representing real-world do-

mains. For example, a single step can convey a complex mathematical

operation such as "x = (y-|-z)*3/z." A compiler or interpreter^ converts

a formula like this into a sequence of operations for the abstract machine.

A higher-level language can be based on more complex symbol structures,

such as lists, trees, and character strings. In LISP, for example, the con-

tents of a number of storage cells in the underlying abstract machine can

'*Eveii this story is too simple. It was true of computers ten years ago, but most

present-day computers have an additional level called 'micro-code' which implements

the abstract machine instructions in terms of instructions for a simpler abstract

machine which in turn is defined in terms of the logical machine.

^The difference between compiling and interpretation is subtle and is not critical for

our discussion.

7.2. LEVELS OF REPRESENTATION 89

be interpreted together as representing a list of items. To the LISP pro-

grammer, the Hst "(APPLES ORANGES PUDDING PIE)" is a single

symbol structure to which operations such as "REVERSE" can be ap-

plied. Once again, there need be no simple correspondence between an

operation at the higher level and those at the lower level that represent it.

If several formulas all contain the term "(y-(-z)" the compiler may produce

a sequence of machine steps which does the addition only once, then saves

the result for use in all of the steps containing those formulas. If asked

the question "Which formula is it computing right now?" the answer may
not be a single high-level step.

A representation scheme for 'facts'. Programs for artificial intel-

ligence use the symbol structures of a higher-level language to represent

facts about the world. As mentioned above, there are a number of different

conventions for doing this, but for any one program there must be a uni-

form organization. For example, an operation that a programmer would

describe as "Store the fact that the person named 'Eric' lives in Chicago"

may be encoded in the high-level language as a series of manipulations on a

data base, or as the addition of a new proposition to a collection of axioms.

There will be specific numbers or sequences of characters associated with

"Eric" and "Chicago" and with the relationship "lives in." There will be

a convention for organizing these to systematically represent the fact that

it is Eric who lives in Chicago, not vice versa. At this level, the objects be-

ing manipulated lie once again in the domain of logic (as they did several

levels below), but here instead of simple Boolean (two-valued) variables,

they are formulas that stand for propositions. The relevant operators are

those of logical inference, such as instantiating a general proposition for a

particular individual, or using an inference rule to derive a new proposition

from existing ones.

In designing a program to carry out some task, the programmer thinks

in terms of the subject domain and the highest of these levels that exists

for the programming system, dealing with the objects and operations it

makes available. The fact that these are in turn represented at a lower

level (and that in turn at a still lower one) is only of secondary relevance,

as discussed in the following section. For someone designing a program

or piece of hardware at one of the lower levels, the subject domain is the

next higher level itself.

The exact form of this tower of levels is not critical, and may well

change as new kinds of hardware are designed and as new programming

concepts evolve. This detail has been presented to give some sense of the

complexity that lies between an operation that a programmer would men-

tion in describing what a program does and the operation of the physical

90 CHAPTER 7. COMPUTERS AND REPRESENTATION

computing device. People who have not programmed computers have not

generally had experiences that provide similar intuitions about systems.

One obvious fact is that for a typical complex computer program, there is

no intelligible correspondence between operations at distant levels. If you

ask someone to characterize the activity in the physical circuits when the

program is deciding where the satellite is, there is no answer that can be

given except by building up the description level by level. Furthermore, in

going from level to level there is no preservation of modularity. A single

high-level language step (which is chosen from many different types avail-

able) may compile into code using all of the different machine instructions,

and furthermore the determination of what it compiles into will depend

on global properties of the higher-level code.

7.3 Can computers do more than you tell

them to do?

Readers who have had experience with computers will have noted that

the story told in the previous section is too simple. It emphasizes the

opacity of implementation, which is one of the key intellectual contribu-

tions of computer science. In the construction of physical systems, it is a

rare exception for there to be a complete coherent level of design at which

considerations of physical implementation at a lower level are irrelevant.

Computer systems on the other hand can exhibit many levels of represen-

tation, each of which is understood independently of those below it. One
designs an algorithm as a collection of commands for manipulating logical

formulas, and can understand its behavior without any notion of how this

description will be written in a higher-level language, how that program

will be converted into a sequence of instructions for the abstract machine,

how those will be interpreted as sequences of instructions in micro-code,

how those in turn cause the switching of logic circuits, or how those are

implemented using physical properties of electronic components. Theo-

retically, the machine as structured at any one of these levels could be

replaced by a totally different one without affecting the behavior as seen

at any higher level.

We have oversimplified matters, however, by saying that all of the

relevant aspects of what is happening at one level can be characterized in

terms of what they represent at the next higher level. This does not take

into account several issues:

Breakdowns. First of all, the purely layered account above is based on

the assumption that each level operates as a representation exactly as an-

ticipated. This is rarely the case. In describing the step from electronic

7.3. CAN COAiPUTERS^DO MORE? 91

circuits to logic circuits, we pointed out that it took careful debugging to

guarantee that the behavior of the machine could be accurately described

in terms of the logic. There is a similar problem at each juncture, and a

person writing a program at any one level often needs to understand (and

potentially modify) how it is represented at the one below. The domain

of breakdowns generated by the lower levels must be reflected in the do-

main for understanding the higher ones. This kind of interdependence is

universally viewed as a defect in the system, and great pains are taken to

avoid it, but it can never be avoided completely.

Resource use. Even assuming that a description at a higher level is

adequate (the representation is veridical), there may be properties of the

machine that can be described only at a lower level but which are relevant

to the efficiency with which the higher-level operations are carried out.

For example, two operations that are both primitive in a higher-level lan-

guage may take very different amounts of time or physical storage to run

on a given machine with a given implementation (representation of the

higher-level language on the abstract machine). Although this may not

be relevant in specifying what the result will be, it will be relevant to the

process of getting it. In real-time systems, where the computer activates

physical devices at times that have relevance in the subject domain (e.g.,

a controller for an industrial process, or a collision avoidance system for

aircraft), the speed of execution may be critical. In the use of storage,

there are often limits on how much can be stored, and the details of when
these limits will be reached can be described only on the lower levels.

Differing attitudes are taken to cross-level dependencies that deal with

resources. Some programmers argue that whenever resources are signif-

icant, the program should be written at the level where they can be di-

rectly described, rather than a higher level. For example they argue that

real-time control processes should be written in assembly language (a lan-

guage that corresponds closely to the abstract machine) rather than in a

higher-level language, since the resources connected with the objects and

operations of the abstract machine can be directly specified. Others argue

that the program should be designed at the higher level only, and that

the lower-level systems should provide higher-level operations that are so

efficient that there never need be a concern. In practice, programs are

often initially designed without taking into account the lower level, and

then modified to improve performance.

Accidental representation. There are some cases in which there are

useful higher-level descriptions of a program's behavior that do not cor-

respond to an intentional representation by a programmer. As a simple

example, there have been a number of 'display hack' programs that pro-

92 CHAPTER 7. COMPUTERS AND REPRESENTATION

duce geometrical designs on a computer screen. Many of these grew out

of programs that were originally created to perform operations on sym-

bols that had nothing to do with visual figures. When the contents of

some of their internal storage cells were interpreted as numbers represent-

ing points on a video display screen, strikingly regular patterns emerged,

which the programmer had not anticipated. One such program produces

figures containing circular forms and might be appropriately described as

"drawing a circle," even though the concept of circle did not play a role in

the design of its mechanisms at any level. In these cases, the description of

the program as representing something is a description by some observer

after the fact, rather than by its designer.

If it were not for this last possibility we could argue that any properly con-

structed computer program is related to a subject domain only through

the relationships of representation intended by its programmers. However

there remains the logical possibility that a computer could end up oper-

ating successfully within a domain totally unintended by its designers or

the programmers who constructed its programs.

This possibility is related to the issues of structural coupling and in-

structional interaction raised by Maturana. He argues that structures in

the nervous system do not represent the world in which the organism lives.

Similarly one could say of the display hack program that its structures do

not represent the geometrical objects that it draws. It is possible that we

might (either accidentally or intentionally) endow a machine with essential

qualities we do not anticipate. In Section 8.4 we will discuss the relevance

of this observation to the question of whether computers can think.

